
CompactPCI Systems / November 2001 Copyright ©2001 CompactPCI Systems. All rights reserved.

The rapid advance of computer technol-
ogy, increasing competition, and the
growth of the Internet are forcing tele-
com network equipment providers to
adopt a new design paradigm. Today’s
telecom networks were built using pro-
prietary circuit-switching technology,
but today’s data networks are packet-
based, and use Commercial-Off-The-
Shelf (COTS) technology wherever possi-
ble. Voice and data network convergence
will require a new generation of equip-
ment that successfully merges these dis-
parate network paradigms. Thus the race
is on to develop and deploy the next
generation of softswitches, network
controllers, and gateways. In this article
Bruce discusses the problems with the
current approaches to designing and
deploying COTS-based next generation
equipment, and describes a solution to
these problems.

Historically, telecoms have used the class
four and class five switches developed by
North American companies like AT&T
(now Lucent), Nortel, and several Euro-
pean and Asian manufacturers. Although
these switches achieve high availability,
they are also highly proprietary, with cus-
tom hardware and software. While they
are good at what they were designed to do,
they are also expensive, difficult to main-
tain, and do not easily scale. Perhaps most
significantly, these switches were built to
provide circuit switching, and cannot
handle the packet traffic of integrated
voice/data networks. In other words, they
do not support the next generation of net-
work services.

Because of the high cost (and long delays)
of developing proprietary microproces-
sors and operating systems for dedicated

telco applications, developers of next gen-
eration switches are turning to COTS
hardware and its associated off-the-shelf
system software, such as operating sys-
tems. Sun SPARC and Motorola PowerPC
processors have been the architectures of
choice to date, but Intel is beginning
to penetrate the market with the growth
of Linux. The use of COTS technology
leverages the product development and
volume production for the enterprise sec-
tor (principally in IT applications), thus
lowering the cost and speeding up deploy-
ment. However, as compelling as the ben-
efits are, COTS technology has several
drawbacks that must be considered when
using it for telco, rather than enterprise
applications.

The problems with using
COTS technology
Telecom customers have come to expect
nearly continuous availability of service –
the target is 99.999% (“five-9s”) avail-
ability. [1][2] This is equivalent to five
minutes a year of downtime. This down-
time includes both scheduled downtime
(to repair faults, load software, upgrade
hardware, perform periodic maintenance)
or unscheduled downtime (due to a
failure).

However, the majority of COTS hardware
and software has been designed for enter-
prise applications, which typically pro-
vide no more than two-9s uptime, and
were never intended to provide five-9s
availability. IT departments have routine
periodic maintenance and repair sched-
ules, and it is common for their equipment
to be out of service for two hours or more
per week, to allow for scheduled mainte-
nance. A single two-hour outage per year
degrades availability to 99.977% – a fac-

tor of 40x worse than true five-9s. COTS
high-availability software also requires
highly specialized system administrators
to keep the system running at even a two-
9s level of availability.

COTS hardware lifecycles are also typi-
cally 18 months or less. This means that a
product deployed today might be obso-
lete, no longer available, or even unsup-
ported by the vendor 18 months from
now. That can cause problems in the telco
market where equipment life cycles are
typically 10 years or more, and where
replacing a piece of hardware with a
“newer, faster” version every 18 months
is simply not a viable option. Therefore,
COTS high-availability systems must be
modified:

■ to provide less than five minutes total
downtime per year

■ to gracefully accommodate newer
system elements

One common approach to achieving high
availability with COTS products is with a
“failover” mechanism. However, while
the failover paradigm has been used suc-
cessfully for certain enterprise applica-
tions, it is difficult (and expensive) to use
when trying to achieve five-9s availability.

The limitations of computer
industry high-availability
implementations
The failover approach (which has been
widely deployed for mission-critical ap-
plications in the commercial world) is
conceptually simple. It typically employs
two systems:

■ an active system
■ a standby system

O N T E L E C O M

F O C U S

How to use COTS technology to build
telecom/datacom systems with five-9s
availability By Bruce Rostowfske

www.compactpci-systems.com

CompactPCI Systems / November 2001 Copyright ©2001 CompactPCI Systems. All rights reserved.

If any failure or outage occurs in the active
system, the backup system takes over
within a few seconds to a few minutes,
resulting in a minimal (but non-zero)
interruption of service. The failover
approach provides some level of protec-
tion against failure with few or no modifi-
cations to existing applications. However,
the actual implementation of such an
approach is typically very complicated.
There are also several drawbacks when
using the failover approach for telco appli-
cations:

■ There is a high initial investment.
■ Identical redundant hardware is

required.
■ The architecture is hard to scale.
■ The monitoring and switchover

process is complex.
■ The finite switchover time means

temporary loss of service.

The high initial investment
Failover systems typically use a 1+1 con-
figuration, with one standby node for each
active node. While this provides redun-
dancy in the event of a failure, it also
requires an investment in duplicate re-
sources that are unproductive most of the
time. An alternative configuration – called
N+1 (in which there is 1 backup node for
N active nodes) lowers the system cost, in
exchange for a more complex failover
management scheme – and a somewhat
higher risk of system failure.

Identical redundant hardware
requirements
From a practical standpoint, all nodes in a
failover system must be identical, in order
to communicate and function properly.
The standby node must have:

■ at least the same throughput as the
node it is backing up

■ the same data structure (and typically
the same physical memory map) in
order to properly execute the data/sys-
tem state replication and switchover

This can be a problem due to relatively
short COTS product life cycles, which are
typically about 18 months. An exact re-
placement might not be available from the
vendor if a failure occurs after 24 months
of service. The user has two choices:

■ hold inventories of discontinued
products over the entire field life of
the equipment, for use as spares

■ replace all the nodes of a system when
a failed node cannot be replaced, at
considerable expense and risk

Difficulties with scaling
failover systems
The use of a failover system also makes
scaling difficult and costly (see Figure 1).
In a 1+1 configuration (1 active + 1
standby node) all the work is handled by a
single system, so the maximum perfor-
mance is limited. The use of an N+1 (N
active + 1 standby node) configuration
(with multiple processors) does raise the
performance ceiling. However, the operat-
ing system overhead involved in manag-
ing the multiple processors (combined
with the additional overhead required to
support failover) limits the effective num-
ber of processors to four (or sometimes
eight) per system. Conventional multipro-
cessing techniques also greatly compli-
cate the task of replicating the data and the
system state information, which must be
done to a duplicate a failed system.

Monitoring and switchover is
complex
The failover model requires mechanisms to:

■ monitor the health of the system
nodes

■ determine when a failure has occurred
■ manage the switchover of all client

and server processes from the active
node to the standby node when a fail-
ure does occur

These mechanisms add overhead and
additional complexity to the system. The
fastest switchover occurs when the back-
up node is running “hot” (i.e., simultane-
ously processing the same transactions as
the active node). However, this adds addi-
tional overhead for constant data and sys-
tem state replication.

In addition, while the failover mechanism
can be hidden from the application soft-
ware, failover schemes are fastest and
most effective when the application soft-
ware is “failover-aware” and manages
some of the failover activities directly. In
practice, therefore, the application soft-
ware is somewhat dependent on the
implementation of the failover mecha-
nism, and must be modified if obsolete
hardware must be replaced.

Finite switchover time means
lost work
It is difficult to achieve sub-second fail-
over times – particularly when “offsite”
redundancy is used to protect against a
disaster (such as an earthquake) that might
cause the failure of an entire physical unit
– including any local redundant nodes.
Traditional failover systems require the
switchover of all server, application, and
database activities. Thus, each failover
event can cause a significant disruption,
resulting in hundreds (or even thousands)
of lost calls.

Parallel processing:
An alternative to failover
As described above, the failover tech-
niques used in commercial applications

O N T E L E C O M

Figure 1

www.compactpci-systems.com

CompactPCI Systems / November 2001 Copyright ©2001 CompactPCI Systems. All rights reserved.

impose limitations when used to support
telco services. However, most of these
limitations (as well as the limitations of
using COTS technology) can be overcome
through the use of a parallel processing
architecture.

In the commercial world, parallel pro-
cessing has not been widely used because
many commercial applications involve
working on one (or a few) large processing
tasks at a time, and are therefore ade-
quately handled by sequential processing.
[3] However, most telecom and datacom
applications involve the concurrent pro-
cessing of voice and/or data streams from
hundreds (or even thousands) of separate,
independent sessions. Because of this,
telecom applications are better suited to
parallel processing.

The Continuant Cluster
Suite solution
GNP has developed a parallel processing
architecture with ultra-high availability
extensions which is called Continuant
Cluster Suite (see Figure 2). It consists of
a set of products that, collectively, provide
a “true carrier class” platform with system
management for telco applications. It is
based on an N+k cluster configuration,
where all nodes are active.

The cluster may be heterogeneous, con-
sisting of different generations of proces-
sor chips and operating systems, or even
different processor architectures (such
as Sun, Motorola, and Intel) all working
together in a single geographically local-
ized cluster, or from geographically sepa-
rated locations.

GNP’s Continuant Cluster Suite provides
a total system approach to achieving
99.999% availability by addressing the
collective effects of:

■ hardware
■ software
■ operations

The standard industry term for this is
OAM&P (Operations, Administration,
Maintenance, and Provisioning). For sim-
plicity, we will use the term operations
instead of OAM&P. Other approaches that
include only one or two of the three areas
(e.g., hardware, or hardware and software)
fall short of “true carrier class” results,
even if they deliver five-9s availability for
those areas that they do address.

Continuant Cluster Suite includes:
■ Continuant Cluster, which is middle-

ware that provides a continuous-

availability infrastructure used
COTS technology. It also provides
seamless (or nearly seamless)
scalability, and allows geographically
separated nodes to function as a
single cluster.

■ Continuant System Manager,
which provides a single, compre-
hensive view of the entire system,
allowing easy system monitoring
and management.

■ Continuant Watchdog, which is
hardware that provides a standardized
interface for out-of-band monitoring,
as well as management of individual
system elements.

While these three elements are designed
to provide a comprehensive solution when
working together, they can also be used
independently. Each is described in fur-
ther detail below.

The Continuant Cluster
The Continuant Cluster uses a 20-year-
old parallel processing approach known
as Linda. Simply put, it uses a pool-of-
work (a.k.a. a-bag-of-tasks) model in
which data (the work or the tasks) is
placed into a virtual shared memory
space (called the bag or pool). Each
processor in the cluster pulls data out of
the shared memory, performs the required
unit of work, and (if necessary) puts the
result back into shared memory. It then
repeats this process.

This approach is simple and robust, since
interprocessor communication is asyn-
chronous and anonymous (there is no
need for processes or processors to iden-
tify each other for interaction). It has been
successfully applied in a wide variety of
specialized applications such as process-
ing high energy physics data, and real-
time pricing of financial instruments, such
as options.

However, when the bag-of-tasks approach
was originally conceived it was optimized
for high throughput and computational
accuracy – not for high availability. There-
fore it is not ideally suited for use in telco
applications. GNP has designed and im-
plemented extensions to Linda that opti-
mize availability in a telecom environ-
ment. These patent-pending extensions,
are the basis for GNP’s Natural Clustering
Technology (NCT), and form the heart of
Continuant Cluster.Figure 2

www.compactpci-systems.com

CompactPCI Systems / November 2001 Copyright ©2001 CompactPCI Systems. All rights reserved.

How Natural Clustering
Technology works
Natural Clustering Technology allocates a
portion of each processor’s memory to a
virtual shared memory space, as shown in
Figure 3. This virtual shared memory is
generally referred to as “tuple space.”
Each “tuple” (that is, each ordered set of
data fields) is a single piece of work that
contains a sequence of data elements that
might include:

■ data values
■ information about the values, includ-

ing type tags such as int32
■ information about the operations to be

performed on that data

Processes and applications access this
tuple space using five basic functions,
which can be called from C, C++, or Java:

ts_out(tuple) write
ts_in(tuple) destructive blocking read
ts_inp(tuple) destructive non-blocking

read
ts_rd(tuple) non-destructive blocking

read
ts_rdp(tuple) non-destructive

non-blocking read

Message processing applications (such
as those based on SS7, H.323, SIP, or
MGCP) are decomposed into a stream
of transactions that consist of:

■ input data ■ a unit of work
■ resulting output data

Each transaction within this stream can
then be processed by any of the nodes in
the cluster. At any given time, tuple space
contains:

■ data associated with the activation of
a new application

■ intermediate products of applications
already in process

Any processor can read a tuple from tuple
space, process it (i.e., perform the work
associated with that data), and return the
results. Any available processor can then
read the result, process it, write that result
back into tuple space, etc. The tuple space
therefore represents a “pool of work” that
is available to any processor. “Executing

an application” consists of progressively
processing and updating the tuples.

All tuple space transactions have degree-
two ACID properties, which are:

■ Atomicity, meaning that grouped
operations either all occur or do not
occur, as a unit.

■ Consistency, meaning that completion
of a transaction leaves the system in a
consistent state.

■ Isolation, which means that concurrent
transactions do not affect each other.

■ Durability, which means that the
result of a transaction is at least as
persistent as the entity being operated
upon.

Depending on the cluster configuration,
the tuple space resides on one or more
processors, and a copy is also maintained
on one or more backup servers. NCT pro-
vides a Transaction API that (in the event
of a node failure) performs a rollback of a
failed transaction, and then allows another
node to process the information.

NCT uses a main memory database to
provide tuple space. In the event that data
needs to be persistent, NCT provides a

Persistent attribute. This creates a RAID 1
equivalent image of the persistent tuples
in main memory, in addition to the images
on the local disks of multiple computers
within the cluster. In addition, for perma-
nent or near-permanent data (such as
billing information or lookup tables) NCT
will interface with external commercial
databases, such as Oracle.

The nodes communicate among each other
using standard Ethernet connections.
Ethernet is reliable, inexpensive, and fast
enough to support most cluster configur-
ations. As they become available, NCT
will support faster interprocessor com-
munications technologies including Giga-
bit Ethernet as well as the new switched
system interconnects (cPSB, Infiniband,
RapidIO, and StarFabric). NCT also allows
synchronization across a WAN for pur-
poses of geographic redundancy.

The advantages of Natural
Clustering Technology
The architecture and implementation of
NCT provides many inherent advantages
for telecommunications applications:

■ There is less overhead for task
management.

O N T E L E C O M

Figure 3

www.compactpci-systems.com

CompactPCI Systems / November 2001 Copyright ©2001 CompactPCI Systems. All rights reserved.

■ The application software does not
need to support failover.

■ Data processing is done in a parallel
manner.

■ Heterogeneous environments are
supported.

■ Scalability is seamless.
■ Software and hardware maintenance

are facilitated.
■ Less code is required for scheduling

and load balancing.

Reduced overhead for task
management
With NCT, each node pulls its own work
from tuple space. This eliminates the need
for a management process (or layer of
software) to assign each piece of work to
each node.

The application software does not
need to support failover
With NCT there is no need for a failover
procedure when a node fails [4] because
every node in the cluster is active and is
continuously pulling its own work. If one
of the nodes fails, it simply stops taking
work and the workflow continues across
the other nodes. One failed node therefore
does not impact the system as a whole.

The amount of work handled by the other
nodes might rise. However, because each
takes work from the pool at its own pace,
there is a natural balancing of work across
the cluster. As long as there is sufficient
reserve capacity in the cluster, each of the
processor loads increase according to their
capacity. (Consider also the fact that in
NCT the processing power of all nodes is
available while, in an N+k failover config-
uration, only N nodes are active at any
given time.)

Data processing is done in a
parallel manner
NCT inherently provides parallel process-
ing. This fits well with most telecom
applications, which require the simultane-
ous processing of many independent voice
and data streams.

Support for a heterogeneous
environment
Using NCT, any processor with idle
capacity can pull work from tuple space
using the NCT API. The processors in the
cluster do not need to be identical. They
might be different generations of a partic-
ular architecture (such as a 270 MHz

UltraSPARC IIi running Solaris 7, or a
500 MHz UltraSPARC IIe running Solaris
8) or even different architectures alto-
gether (such as SPARC nodes, PowerPC
nodes, and Intel nodes).

Since additional processors (and the
associated system software required for
expansion or replacement) need not be
identical to the original equipment, the
problem of matching short COTS product
life cycles to the long deployed life cycles
of telecom equipment is resolved. For ex-
ample, if a Sun SPARC processor breaks-
down after two years, and if Sun no longer
supports that particular version of the
processor, there is no need to replace all of
the cluster processors with the latest ver-
sion. A newer version of the processor can
be incorporated into the cluster of older
processors.

Contrast this with a failover system. If
some processor in the cluster fails, and if
all of the processors need to be upgraded,
the codependency of the hardware and
software might dictate an upgrade to the
operating system, as well as rewrites of
any application software that participates
in the failover process. With NCT, only
the processor that failed is replaced. The
operating system might need to be up-
graded. However, the application software
can remain the same.

Seamless scalability
Since the “pool of work” algorithm
requires no administrative overhead,
additional processors simply expand the
pool of resources available to draw work
from tuple space. NCT scales easily and
gracefully and (in theory) can expand to
an infinite number of processors. In prac-
tice, a practical limit is imposed by the
bandwidth of the interprocessor com-
munication. Also, if only certain nodes
handle the I/O, the I/O might become a
bottleneck.

Facilitation of software and
hardware maintenance
NCT’s ability to scale in a heterogeneous
environment is a tremendous advantage
when performing maintenance and
upgrades. Just as nodes can easily be
added when scaling, one or more of the
nodes can be removed from service tem-
porarily for upgrades and/or maintenance
with minimal impact on the remainder of
the cluster.

NCT’s support of heterogeneous environ-
ments also allows online upgrading of
operating systems or other system soft-
ware. Even application software can be
upgraded, as long as it does not change the
data structures used within the system. In
the event the data structures must be
changed from one version of the applica-
tion to the next, an online upgrade is still
possible, but it requires special coordina-
tion to ensure zero downtime.

Less code is required for
scheduling and load balancing
The simplicity of NCT significantly
reduces the amount of code needed to
achieve 99.999% availability. NCT’s
pool-of-work concept (which is supported
by tuple space) enables the nodes in a
cluster to share the workload without the
need for any extra code for scheduling or
load balancing. This has significant impli-
cations for the system developer, since
code normally developed to handle these
functions can be completely eliminated.
Thus development costs and time-to-mar-
ket are dramatically reduced, while the
quality and the reliability of the applica-
tion are improved.

The Continuant System Manager
The Continuant System Manager is the
second component of the Continuant
Cluster Suite. It is a suite of tools designed
to manage the Continuant Cluster Suite
and any associated components. It pro-
vides a complete operations framework
designed to eliminate non-hardware-
based failures within the system, and to
automate most of the system administra-
tor’s routine tasks. It features a high-level,
unified system management view across
all nodes (and across all geographically
dispersed sites) enabling a user to monitor
the entire network from anywhere in the
world – regardless how many nodes exist,
and at how many sites.

Most importantly, the Continuant System
Manager supports successful recovery
from the inevitable craft or administrator
induced crashes. Continuant System
Manager is “craft-friendly” in that it pre-
vents (or at least facilitates graceful recov-
ery from) errors that may be made by field
personnel, such as:

■ typing in the wrong commands
■ pulling out the wrong node
■ improper shut down

www.compactpci-systems.com

CompactPCI Systems / November 2001 Copyright ©2001 CompactPCI Systems. All rights reserved.

If a node goes offline, the cluster contin-
ues to function using the pool-of-work
model, and the system does not crash.
Continuant System Manager can be
thought of as an embedded systems
administrator that works 24/7 on the net-
work, eliminating the need for dedicated
human system administrators.

Continuant System Manager consists of
the following logical elements:

■ a recovery facility for UNIX
■ system and application data

administration
■ a process monitor
■ a logging and engineering manager
■ a fault recovery/reconfiguration

manager
■ a display manager
■ a diagnostic manager
■ an update manager

The recovery facility for UNIX
This facility protects a stock version of
UNIX (e.g., Solaris or Linux) against
improper shutdown. In the event of
improper shutdown (such as the craft
improperly removing an active processor)
the node reboots to a standard, known
state, after which it is automatically con-
figured (based on the needs of the cluster)
and then reintroduced into the cluster.
This eliminates the need for manual sys-
tem repair following an unexpected event.

System and application data
administration
This facility monitors both the system
and the application data, detecting any
changes that might affect the system. It
also provides a set of tools for managing
the data, and logs any changes that are
made.

The process monitor
The process monitor tracks the health of
cluster processes, as well as non-cluster
applications that are important to main-
taining service. In addition, it also man-
ages heartbeats and failover for applica-
tions that are not part of the cluster
processing.

The logging and engineering
manager
The logging and engineering manager

provides the capability for logging sys-
tem-wide information, collating it, and
presenting it in a unified system view, as
well as tracking the actual performance of
the cluster and application.

The fault recovery/reconfiguration
manager
The fault/reconfiguration manager uses a
customizable set of rules and instructions
to detect faults and to optimize the system
configuration after changes. It also moni-
tors the network to ensure compliance
within a set of preset conditions and restric-
tions, and it has the intelligence to dynam-
ically reroute around failures, and to inte-
grate new hardware as it is added. For
example, if one of the nodes goes offline
the fault/reconfiguration manager will
attempt to restart it. Once restarted, the
node will be automatically reconfigured,
and then (if it is functioning properly) it
will be re-introduced into the cluster.

The display manager
The display manager is a set of basic tools
and reference designs for building graphi-
cal and command line interfaces for the
cluster, and for cluster applications. Fig-
ure 4 shows a sample of a GUI designed
with this toolset.

The diagnostic manager
The diagnostic manager uses a set of intel-
ligent agents that are capable of isolating
faults within the system, and then works
with the fault recovery/reconfiguration man-
ager and local craft to repair the failures.

The update manager
The update manager handles the roll-
out/roll-back for software, operating sys-
tem patches, and system policies for the
entire cluster.

The Continuant Watchdog
The final piece of Continuant Cluster
Suite is called the Continuant Watchdog.
It is a PC board that provides an out-of-
band remote control and maintenance
framework that is connected to all hard-
ware components in the cluster. It can
be configured to manage any COTS com-
ponent.

The Continuant Watchdog pairs an out-of-
band hardware component with each com-

ponent in the system. In doing so, it pro-
vides the necessary interfaces to allow a
monitoring system (or a user) to com-
pletely manage a networked computer
system. Through a single-port terminal
server to each console port, the Continuant
Watchdog allows remote monitoring, con-
figuration, and provisioning capabilities. It
can even perform a hard reset on an un-
responsive (or worse yet, a “babbling”)
node. The Continuant Watchdog also inter-
faces with existing Central Office alarming
schemes.

Conclusion
In the race to build the next-generation
voice and data communications infra-
structure, COTS technology will enable
telecoms to quickly (and cost effectively)
develop and deploy the latest soft-
switches, network controllers, and gate-
ways. However, COTS technology alone
will not allow telecoms to achieve
99.999% availability. Traditional failover
techniques offer some degree of high
availability, but as telecoms continually
expand their infrastructures, they will find
themselves burdened by the limitations
and the overhead associated with conven-
tional failover models.

The Continuant Cluster Suite provides a
new approach to building a “true carrier
class” infrastructure – one that is tailored
to the five-9s availability and the expan-
sion needs of the teledatacom market. The
Continuant Cluster Suite combines the
simplicity, the scalability and the robust
nature of parallel processing with GNP’s
extensions, which are designed to opti-
mize availability in a telecom environ-
ment.

The Continuant Cluster Suite’s manage-
ment component (Continuant System
Manager) and the service component
(Continuant Cluster) together with Con-
tinuant Watchdog, provide a robust solu-
tion with a single point of management for
the entire network. Although designed as a
comprehensive solution, each of the
Continuant Cluster Suite elements can be
used independently, and integrated not
only with COTS elements, but also with
any telecom’s proprietary hardware and/or
software.

O N T E L E C O M

www.compactpci-systems.com

CompactPCI Systems / November 2001 Copyright ©2001 CompactPCI Systems. All rights reserved.

The Continuant Cluster Suite plays a crit-
ical role in providing telecom network
equipment providers with the 99.999%
availability required to compete in the
race for next generation data and voice
convergence.

Notes:
[1] This article uses the phrases

“99.999% availability,” “five-9s,”
and “carrier class” interchangeably.
Availability here refers specifically
to “application” availability, which
is dependent on hardware, software,
as well as operations. Therefore, it
is a more restrictive definition than
“system” (i.e. hardware, or hardware
plus software) availability.

[2] The term “availability” here refers
specifically to “application” avail-
ability, which is dependent on
hardware, software, as well as
operations. Therefore, it is a more
restrictive definition than “system”
(i.e. hardware, or hardware plus soft-
ware) availability. [1] The phrases
“99.999% availability,” “five-9s,”
and “carrier class” will be used
interchangeably in this article.

[3] Most commercial applications could
be written to support parallel pro-
cessing more extensively. Parallel
processing has been underutilized
due to the conventional approach
to programming, which results in
sequential execution of applications.

[4] There is a failover mechanism
applied to server-based functions
within NCT, the primary function
being management of tuple space.
However, since much of the applica-
tion is executed as client processes,
for which there is no failover, an
NCT failover event is less disruptive
than that within a traditional
“failover” system, in which all client
as well as server processes must be
switched. In NCT, the TSS failover
time is a parameter that can be tuned
to account for client applications’
characteristics (e.g., geographic
separation, network traffic, etc.)

Bruce Rostowfske
is the Chief
Technical Officer
at GNP, where he
helps ensure that
the company contin-
ually develops and

upgrades leading edge solutions that
keep GNP at the forefront of the develop-
ing convergent communications industry.
Rostowfske is the lead designer for
GNP’s Continuant Cluster Suite, a multi-
node computer operating environment
for use in telecommunications switching
applications. During his six years at
GNP, Rostowfske has also developed
controller solutions for embedded net-
work applications in wireless and
Internet markets, for such companies as
Lucent, Nortel, QUALCOMM, and
BellSouth. Prior to joining GNP,
Rostowfske served at AT&T Bell Labs
as a Switching System Architect. In this
role, he supported major Central Office
switching system design activities.
During his 10 years at AT&T, he headed
the development work on the company’s
4ESS switch, supported the planning and
development of major hardware and soft-
ware upgrades, and helped to introduce
SS7 control technology for AT&T and
RBOC networks. Rostowfske was also a

member of AT&T’s Root Cause Analysis
team, which was responsible for investi-
gating network failures, and participated
in studies of PSTN/Packet network inte-
gration. Rostowfske served in the
United States Air Force for five years.
He received a BS degree in Computer
Science from the University of Wisconsin,
and an MS in Computer Science from
George Washington University.

O N T E L E C O M

Figure 4

If you would like further information

about the NCT API or programming

with NCT, you can request the Natural

Clustering Technology Developer’s

Manual from GNP at:

GNP Computers

555 E. Huntington Dr.

Monrovia, CA 91016

Tel: 626-305-8484

Fax: 626-305-9177

Web site: www.gnp.com

www.compactpci-systems.com

