
CompactPCI Systems / November 2001 Copyright ©2001 CompactPCI Systems. All rights reserved.

With the convergence of voice and data onto next-generation
networks, and the growing number of commercial Internet users,
service providers must provide quality of service (QoS) levels
comparable to today’s Public Switched Telephone Network
(PSTN) in order to remain competitive. Such levels of service
demand so-called “5-nines” (99.999%) reliability and imply
that hardware and/or software faults, repairs, and upgrades to
the system not interrupt or disrupt ongoing transactions or
inhibit establishment of new network connections.

To meet the needs of the rapidly growing Internet, infrastruc-
ture equipment manufacturers are now struggling to develop,
deliver, and integrate these mission-critical systems. With huge
pressures to bring products to market faster, and faced with sky-
rocketing costs and complexity of system development, these
manufacturers are migrating to open architecture hardware and
software building blocks sourced from multiple vendors instead
of their own tradition of vertical integration.

This building block approach allows them to quickly and effi-
ciently enhance customers’ systems and networks, while main-
taining the highest levels of service and reliability. Termed the
“Open Availability Architecture,” this latest technology enables
carrier-class OEMs to define and purchase application-ready
computing platforms to meet their goal of 5- and 6-nines avail-
ability targets without resorting to proprietary hardware or
system software components.

High Availability Forum
High availability (HA) is a term for technology that enhances the
“uptime” of computer-based communications systems by distrib-
uting functionality across multiple, usually off-the-shelf CPUs. In
response to hardware and software failures, HA systems facilitate
the rapid transfer of control (failover) from a faulty CPU, periph-
eral, or software component to a functional one, while preserving
operations or transactions in-progress at the time of failure. Many
embedded designers choose the standard CompactPCI board and
system form factor for HA designs since it supports replacement
and insertion of system and peripheral cards without the need for
cycling power, reducing technician-assisted time-to-repair.

Earlier this year, the HA Forum released its report on open archi-
tecture HA solutions. Members of the Forum include, Dialogic (an
Intel company), GoAhead Software, Hewlett-Packard, Intel Cor-

poration, MontaVista Software, Motorola Computer Group,
RadiSys, and Ziatech (an Intel company). The Forum’s report sup-
plies important guidelines that facilitate the development of sys-
tems for the Internet and telecom infrastructure with virtually no.
The report also promotes the adoption of the open architecture
model by providing important best-known methods and capabili-
ties for the development of HA systems. Topics addressed within
the report include redundant hardware and software components,
storing information, fault management, replacing and upgrading
components, and dynamic reconfiguration of the system – all
essential factors that lead to the successful implementation and
operation of HA systems.

Availability defined
Collections of four, five, or more nines are bandied about in mar-
keting settings without much thought to what availability really
means. While “5-nines” or 99.999% uptime literally implies
exactly that – 365 days, 23 hours, 54 minutes, and 45 seconds of
operational time during a year (or 5 minutes and 15 seconds), in
practice that is a not a “useful” number out of context, in that it
does not take into account the reliability of constituent compo-
nents and processes for failure resolution. Availability is best
defined as:

MTBF = Mean Time Between Failures

MTTR = Mean Time to Repair

So, if a system offered a MTBF of 20,000 hours with a MTTR of
2 hours, then its availability would be 99.99%, “4-nines.”

Service companies, ISPs, and others have for years promoted
availability on a human time base, that is, in terms of days or
hours in a week – PST business hours, 7-to-7-by-5, or 24 x 7. In
most discussions of telecommunications applications, systems
builders want to measure availability on a precise annual basis –
how much downtime a system can expect to experience over the
course of year (shown in Table 1).

HA for Linux thus either focuses on increasing MTBF (cluster-
ing, redundancy) or reducing MTTR (hot swap, failover).

The communications infrastructure challenge
HA systems for communications infrastructure, unlike standard
enterprise computing equipment, cannot merely rely on manufac-

OPEN AVAILABILITY ARCHITECTURE:
Building highly available systems with

Linux and CompactPCI
By Bill Weinberg

INDUSTRY FEATURE Open-Source Building Blocks

MTBF

MTTR

www.compactpci-systems.com

turer-specified hardware MTBF figures, since they focus on single
components or smaller subsystems. Moreover, high software con-
tent equipment must also factor in practically unobtainable soft-
ware MTBF numbers. On the repair side as well, HA systems for
infrastructure usually require theoretically instantaneous failover,
that is, the 5.26 minutes of annual cannot occur in one chunk
(planned or otherwise), or even several shorter intervals, but rather
needs to be spread out in increments lasting no more than parts of
second as repair systems, not human technicians, do their work.

High availability vs. traditional (MxN)
fault tolerant systems
In the past, traditional fault tolerance and fault resilience were
achieved through the use of redundant systems working in paral-
lel. Two or more hardware resources were dedicated to replicate
the computing task at hand, proceeding in lock-step with one
another, such that when a fault occurred, at least one of N systems
continued to operate.

Under nominal conditions (pre-fault), an external arbitration
mechanism decided which redundant computing node held sway;
in some systems, key calculations and programmatic decisions
were put up to a vote, with the majority winning out. Example
applications include many field central office systems, power grid
managers, and some high profile designs, like the space shuttle.

Such systems typically relied on over-engineered, customized
hardware (to increase MTBF), built and integrated at great expense.
While traditional fault tolerant systems thereby offered many
“nines” of availability, the added-value hardware also introduced
significant added cost: the systems were expensive to acquire, inte-
grate, maintain, and nearly impossible to upgrade since they did not
leverage off-the-shelf components and subsystems.

While such redundancy and arbitration were costly to implement,
their impact on application software was usually minimal
and often completely transparent. Applications, as long as they
presented their output in an acceptable format, didn’t have to
acknowledge or accommodate the parallelism or monitored
nature of their environment. Programs simply ran in parallel, nei-
ther taking advantage of additional system resources nor paying a
software performance price for their enhanced uptime. When
faults did occur, failover to working nodes appeared to be instan-
taneous, since hand-off was managed externally and all nodes
maintained parallel, independent state information. Faults effec-
tively consumed, however, entire nodes, since arbitration could
not determine the scope of a failure: the fault could lie with a
node’s CPU (fatal), with an individual peripheral or subsystem
(possibly recoverable), or with individual software components,
interfaces, or programs (usually recoverable). So, regardless of the
actual fault scope, fault tolerant systems classically remove the
entire node from action.

Highly available system architectures contrast starkly with fault
tolerant designs, as outlined in Table 2. HA leverages less expen-
sive, commercial off-the-shelf (COTS) components (cf. RAID),
in a distributed environment.

Because the hardware is primarily COTS, upgrade paths exist at
all levels, allowing designers, integrators, and IT teams to reap the
benefits of Moore’s Law for CPUs, plummeting memory prices,
expanding storage capacities, faster networking, etc. And, rather
than “burning” CPU and peripheral bandwidth in spares that only
replicate active functions, extra CPU horsepower in a nominal,
functional (pre-fault) system can be applied to computing tasks at
hand instead of being held in reserve.

CompactPCI Systems / November 2001 Copyright ©2001 CompactPCI Systems. All rights reserved.

“Nines” Application Uptime % Actual Downtime

2 Office Equipment 99% 3 days 15.6 hours

3 Most IT Infrastructure 99.9% 8.76 hours

4 Internet Infrastructure 99.99% 52.56 minutes

5 PSTN & Other Business Critical Apps 99.999% 5.26 minutes

6 Life Critical Applications 99.9999% 31.54 seconds

Table 1. “Nines,” applications, and uptime

Architecture M x N N + M

Hardware Redundant, Highly Custom Distributed COTS

Upgrade Path Difficult, Expensive Cost-effective

Synchronization Lock-step execution Asynchronous execution

Application Overhead None / Transparent Nominal / Cooperative

CPU Utilization Low: < 50% – 1/M High: 50-80%

Failover Latency Instantaneous Finite, Characterized

Failover Resolution Entire Nodes CPUs/Peripherals/Processes

Table 2. A comparison of traditional fault tolerant and highly available systems

Fault Tolerance High Availability

www.compactpci-systems.com

CompactPCI Systems / November 2001 Copyright ©2001 CompactPCI Systems. All rights reserved.

Moreover, when faults do occur, rather than retiring or restarting
entire fault tolerant nodes, highly available systems need only
failover the individual CPU or hardware interface involved, and
have the freedom to choose whether to replace or restart failed
applications or software interfaces.

The developer’s job, however, is more challenging with highly
available design. Programmers must rethink assumptions about
hardware constancy, operator proximity, and plan for failure.
Applications themselves must be written with integrated health
monitoring or at least encased in HA “wrappers” and be capable
of accommodating ephemeral resource availability. Applications
with real-time requirements must acknowledge that health moni-
toring and resource management can impact response latencies.
The same is true for design, giving rise to the notion of kernel
“hardening.”

CompactPCI and Linux for HA
From an application software perspective, the choice of form fac-
tor is often transparent. Differences among PC-AT, PC/104, VME,
PCI, CompactPCI, etc., are encapsulated by the kernel, drivers,
and interfaces. Linux is very much at home on these architectures,
and solid, commercial ports are available for the embedded archi-
tectures represented thereon, specifically IA-32/x86, PowerPC,
and to a lesser extent, MIPS (the same cannot be said of Windows
and most RTOS platforms).

Why CompactPCI?
Embedded systems designers often wear both software and hard-
ware hats, and cite a mix of reasons for choosing CompactPCI:

■ CompactPCI 6U form factor is comfortable for migrating
VME designs: same footprint, more capability, more
bandwidth

■ CompactPCI offers infrastructure for hot swap and other
availability enhancers

■ Embedded PCI buses and carriers offer higher CPU density
per slot

■ PCI address space is larger and flatter than VME address
windows

■ CompactPCI is well supported by Linux

These same designers also complain of:

■ CompactPCI’s limited slots (1+6) per chassis/domain, vs.
VME’s 18+ slots per chassis

■ High cost of boards and chassis vs. VME (and the
unfulfilled promise of leverage desktop PCI hardware
economies of scale)

■ CompactPCI’s limited backplane data rates/bandwidth and
cost vs. 100 Mbit and Gigabit Ethernet

■ The complexity of building hot-swap aware operating system
kernels, drivers, and the challenge of dynamic PCI memory
space mapping

The vector sum of the above factors ends up favoring CompactPCI
for HA, and my personal experience with embedded Linux cer-

tainly confirms this continuing preference. In my two years at
MontaVista Software, I have engaged with perhaps 35 devel-
opment projects for communications-intensive, highly available
systems that originally specified VME hardware platforms, both
for legacy and new designs. These designs included projects in
telecommunications, data communications, aerospace/defense,
industrial control, and other areas. All eventually chose Compact-
PCI and are now in the process of deploying embedded Linux
instead on that architecture.

Developers’ choices are of course echoed by board vendors intro-
ductions and road-maps, and where VME once ruled in terms of
board-vendor shelf-space, CompactPCI now dominates. These
same vendors until recently promoted their hardware offerings as
supported first and foremost by Microsoft Windows NT/2000 and
Wind River Systems’VxWorks; now they tout Linux.

As it turns out, MontaVista’s Hard Hat Linux version 1.0, intro-
duced in 1999, exclusively supported CompactPCI, and later
added support for other form factors, only introducing VME sup-
port in our latest Hard Hat Linux 2.0 release. Today, Hard Hat
Linux 2.0 Professional Edition targets almost 20 CompactPCI
system boards, peripheral slot CPUs, PMC mezzanine cards, and
carriers from Motorola Computer Group, Force Computers,
Artesyn, MEN, Momentum, SBS, and Ziatech with support for
PowerPC, IA-32, and MIPS architectures.

The case for using CompactPCI for HA design remains com-
pelling even when the form factor is leveraged only for its electro-
mechanical characteristics. That is, many HA systems designers
will still choose CompactPCI boards and chassis while foregoing
connectivity via CompactPCI bus transfers, in many cases com-
pletely ignoring the PCI bus and the signals associated with hot
swap (ENUM, etc.). CompactPCI in this case “merely” presents a
highly reliable, cost-effective hardware platform with functions
like health monitoring, inventory management, sparing, etc. all
implemented via external network connections.

Such is the case with the above-mentioned HA forum architecture
and a demonstration introduced at SuperComm this Spring in
Atlanta by Radisys, MontaVista, and GoAhead. The demonstra-
tion combined a RadiSys fault tolerant CompactPCI chassis (with
built-in redundancy of fans and power supplies); switched Ether-
net CompactPCI cards; IPMI platform management; GoAhead’s
SelfReliant 7000 Series management middleware; and Monta-
Vista’s Hard Hat Linux operating system. While the joint archi-
tecture leverages CompactPCI for both MTBF enhancement and
MTTR reduction, all application communications occur via high-
speed Ethernet connections.

Linux, open source, and HA
Now then, why Linux? Open source Linux is a dynamic and
growing operating system platform with ample capabilities in
many areas, including HA. The Linux community is fostering HA
innovation, and the open source development paradigm is provid-
ing a fertile proving ground for new ideas.

I N D U S T R Y F E A T U R E

www.compactpci-systems.com

Developers in all areas of embedded systems development are
flocking to Linux for myriad reasons. Key stated motivations are:

■ Availability of source code
■ Standard APIs and other interfaces
■ Stable and robust platform
■ Integrated, high performance networking
■ Support for a broad range of processors and peripherals
■ No runtime royalties

Excellent performance in terms of throughput and real-time
response

These criteria translate into two obvious benefits: lower overall
cost of deployment and faster time to market.

MontaVista open source HA-related Linux projects
MontaVista Software has contributed a variety of technologies to
the open source community as parts of Hard Hat Linux, in shared
specification, and as free-standing open source projects, including:

■ Authoring the PICMG 2.12 (CompactPCI Software
Interoperability) appendix for Embedded Linux

■ PICMG 2.12 hot-swap driver as an open source project on
SourceForge – http://sourceforge.net/projects/picmg212-hs

■ Authoring the low-level interface specification for PICMG
2.13 (system slot hot swap)

■ Leveraging the Linux 2.4.x SMP kernel for preemptible, real-
time performance, with the MontaVista preemption patch

■ The MontaVista real-time characterization project
(http://www.mvista.com/realtime)

Developer requirements
In a study involving over two dozen customers, prospects, and
partners with high availability requirements, MontaVista con-
firmed a variety of suspicions about how developers are lever-
aging COTS software and hardware to build highly available
systems. Figure 1 highlights HA technology requirements from
these developers and systems suppliers.

The following sections discuss and detail how both open source
Linux and MontaVista address these requirements with technolo-
gies and products.

Embedded CPU support
CPU preference among HA systems developers and suppliers
appears to some degree to track embedded systems CPU choice,
biased by the embedded PC product lines offered by key board
vendors and by Windows NT/2000 penetration into computer
telephony and communications. That is, IA-32/x86 and PowerPC
are the two most popular 32-bit architectures for embedded
designs in general [1], and also for embedded Linux in particular
[2]. While more deeply embedded applications data puts
PowerPC architecture ahead of IA-32/x86, economies of scale,

I N D U S T R Y F E A T U R E

IA-32/x86

Target CPU

PowerPC

Other

CPCI Reqs

Hot Replace

Hot Insert

Redundant CPU

Networking

Redundant E-Net

Backplane Net

NFS

Other HA Reqs

Clustering

Journaling FS

SNMP

IPMI

Management M/W

59%

36%

5%

5%

5%

23%

50%

45%

18%

23%

9%

9%

14%

82%

Figure 1. HA technology requirements from developers and systems suppliers

CompactPCI Systems / November 2001 Copyright ©2001 CompactPCI Systems. All rights reserved.

www.compactpci-systems.com

CompactPCI Systems / November 2001 Copyright ©2001 CompactPCI Systems. All rights reserved.

the ability to leverage desktop PCI technologies, and prior
assumptions about Windows overtaking embedded operating sys-
tems (to say nothing of Linux) in this space motivate CompactPCI
board vendors to favor embedded PC architecture in their product
lines, and developers in their hardware choices.

Since Linux started out and continues to thrive as a white box PC
operating system (see http://www.kernel.org), its support for x86
and for PCI bus derivatives is by default quite good. PowerPC
workstation support is also rather good from the open source com-
munity, with distributions from linuxppc.org, Yellow Dog, and oth-
ers readily available for Macintosh and other PowerPC hardware.

Embedded Linux follows suit with MontaVista and other suppli-
ers focusing their energies first and foremost on these CPU plat-
forms in embedded settings, leveraging open source where avail-
able, investing as needed, and fostering the open exchange of
many derived technologies. Indeed, across all application spaces
(not just communications infrastructure), x86 and PowerPC com-
bined, account for approximately three quarters of MontaVista
business.

Hot swap: Replacing and augmenting board inventory
Anyone today with exposure to CompactPCI is already familiar
with the hot-swap process: go up to a running chassis, pop an
extraction handle, wait for the little blue light, and voilà – you can
safely remove a board without cycling power. Fewer people are
aware of the distinction between hot replace and hot insert, and
fewer still have an inkling of the operating system kernel and dri-
ver infrastructure required to accomplish this sleight of hand.

Hot replace vs. hot insert
As stated above, the goal of hot swap is to reduce MTTR and so
enhance overall availability. It is important to remember, however,
that hot swapping boards in and out does not always occur in
response to a fault, but as a means to enhance capacity or future
fault resilience through hardware upgrades.

Most so-called hot swap solutions to date only implement hot
replace. That is, they support only the hot extraction and insertion
of instances of board-level hardware already present at boot time.
As such, they only maintain the initial inventory of primaries and
spares, in terms of number and of type, in a static runtime chassis
population. Most such solutions do not even allow the insertion of
replacement boards in a slot other than the one vacated by the
faulty board being replaced.

Key kernel technologies to support hot replace include:

■ Device/driver instance management
■ #ENUM handling
■ Optional support for nonconformant slot management
■ Basic PCI memory space mapping (boot time)
■ Some kind of interface abstraction with notions of

suspend/resume

Linux supports hot replace very well, as do solutions from hard-
ware and after-market software vendors for Microsoft Windows
and Wind River Systems’ VxWorks, and indeed the need for hot
replace only is the major requirement from the companies polled

above.

Developers are not requiring hot insert because they do not
believe it exists! This “Holy Grail” of CompactPCI requires all
the same capabilities, plus:

■ Ability to recognize ID codes for new devices
■ PCI memory space expansion, remapping, reuse
■ Interaction with a policy system to govern disposition of new

hardware resources

While various vendors and platforms attempt to address these
requirements in a “band-aid,” add-on fashion, MontaVista and the
Linux community are building in deep support for hot insert and
hot swap underpinnings, and MontaVista is delivering it this year.

Hot swap infrastructure (PICMG 2.12)
Most of the implementations of hot swap to date have been ad hoc
at best, and outright kluges at worst. Fortunately, PICMG standard
2.12 for Hot Swap Infrastructure is finally taking hold, allowing
developers of system code, devices and device drivers, middle-
ware, and to some extent HA-ready applications to leverage a
common technology base.

MontaVista, for its part, already announced an early PICMG-
compatible deliverable earlier this year and will be delivering a
fully 2.12 compliant solution for multiple CPU architectures and
platform vendors early in Q4 2001 for Hard Hat Linux 2.0.

About the HyperTransport Technology Consortium

The HyperTransport Technology Consortium,
formed in July 2001, conducts a forum for the
future development and adoption of the specifica-
tions for HyperTransport technology. The consor-
tium also manages and refines the specifications,
and proliferates an infrastructure of test and ver-
ification tools to speed up market delivery of
devices enabled with this technology. Product sam-
ples using HyperTransport are currently available,
and other components are planned to be in volume
production by the end of the year.

This new high-speed, high-performance link
specification is being offered as an open standard
through membership in the HyperTransport Tech-
nology Consortium. Charter members of the
consortium include: Advanced Micro Devices, Sun
Microsystems, API NetWorks, Cisco Systems, PMC
Sierra, Inc., NVidia Corporation, Transmeta
Corporation, and Apple Computers. For member-
ship information, go to www.hypertransport.org.

www.compactpci-systems.com

CompactPCI Systems / November 2001 Copyright ©2001 CompactPCI Systems. All rights reserved.

Hot Swap Aware Driver Architecture
Hot Swap Aware Drivers (HSAD) are device drivers modified
and/or originally architected to support the hot swap interface. To
be Hot Swap Aware, the driver must be capable of being deacti-
vated, and of being able to restore appropriate state to a board that
has been newly inserted. A desirable capability for a HSAD would
be to checkpoint its state at appropriate points to facilitate a smooth
failover in the case where a hot standby CPU takes over the bus.

The HSAD architecture for Linux draws on earlier work by and
for PICMG and hardware vendors like Motorola Computer
Group, Force Computers, and others. While detailed descriptions
of HSAD architecture have been published elsewhere [3], the key
features of the Linux HSAD and differences from conventional
device drivers can be summarized as:

■ State machine architecture
■ Standard multi-point UNIX/Linux device driver extended

with IOCTL calls
■ Leverages Linux dynamically installable kernel module

interface
■ Built in, required support for certain types of alarms and

logging

Customer expectations and vendor deliverables for HSADs have
been at odds. Software platform vendors have delivered HSADs
in kit form, as templates, as part of loose frameworks, in binary-
only, or for obsolete device sets. In my personal interactions,
developers consistently request customizable source code, rea-
sonably standardized APIs, and a good out-of-the-box experience
(OOBE) for popular, easily obtainable peripheral hardware.

At present, MontaVista and others are delivering hot swap aware
drivers for Ethernet only. Ethernet is the perfect fit for first deliv-
ery because:

■ NIC devices have simple internal state
■ TCP/IP over Ethernet provides delivery guarantees beyond

HA system promises
■ Numerous interfaces exist off the shelf in multiple form factors
■ TCP/IP over Ethernet is used for both applications

networking and for health monitoring
■ It can be integrated into a variety of topologies and

bandwidth sharing schemes
■ It demonstrates well
■ The Linux kernel and driver family supports Ethernet and

TCP/IP as “native” capabilities

Other candidates for HSAD support in the near term include
SCSI, IDE, and other peripherals with increasingly complex inter-
nal state models. While the ability to hot swap physical media is
common in many HA CompactPCI chassis and dedicated RAID
systems, it still represents a significant challenge to all embedded
and enterprise operating systems platforms including Linux.

Hot swap and intelligent I/O cards

All discussions of hot swap have focused how a system-slot CPU
and its chassis handle the appearance and departure of electro-
mechanical and logical presence in a system of peripheral devices
and their associated mapped memory. The HSADs themselves by
definition reside on the system slot CPU built into or bound onto an
operating system kernel, in our case, Linux. Hot swap peripherals
are presumed to reside on unintelligent I/O cards (no CPU) or on
equally vapid PMCs riding on carrier cards with transparent bridges.

Communications equipment manufacturers choosing to leverage
CompactPCI several years ago began regarding this division of
intelligence (smart system slot, dumb I/O slots) as physically
wasteful, especially when compared with VME. In response to
their customers’ request for greater distributed computing intelli-
gence, i.e., CPU density, CompactPCI board vendors began offer-
ing 6U, 3U, and PMC-based non-system slot CPUs, such that
every slot in the local chassis could carry up to three additional
microprocessors (a 6U intelligent carrier with 2 PMC CPUs).

These intelligent I/O cards present a “virtual” device footprint to
Linux (or any other operating system) running on the system slot.
That is, transparent bridges allow the host controller to “see” lim-
ited portions of the intelligent I/O card’s memory and memory-
mapped resources for sharing (and backplane communications),
but not usually as part of a memory-mapped I/O scheme.

Indeed, supporting these intelligent I/O cards is not in the domain
of peripheral support, but of standard kernel board support. Each
CPU looks like a “little host” and must manage its own, “local”
issues, including:

■ Boot media – from local flash, via Ethernet, or over the
CompactPCI backplane

■ Boot image – how much local flash and RAM is available
(Linux is smaller than you imagine!)

■ Root file system – without local rotating media (disk),
Linux/bin and other key directories must mount with NFS or
on local RAM or local non-volatile memory

■ Boot time – how long after hot insertion is an intelligent node
ready for “action”

■ Shutdown – a system must be able to accept shutdown
commands from the system slot and/or service locally with
initial extraction and/or premature extraction attempts

■ Halt time – during a hot removal, how long does the system
need to shutdown, sync file systems, etc. before enabling the
Blue LED

■ Slot-to-Slot I/O – how much system slot intervention is
needed to set up and maintain communications among
intelligent I/O cards; what happens to such communications
during a system slot failover

MontaVista and others are meeting these challenges with flexible
options for booting compressed and remotely hosted kernel
images, for supporting compressed r/w and read-only flash file
systems (JFFS and CramFS), for accelerating boot and daemon
start times from several minutes to seconds, speeding shutdown

I N D U S T R Y F E A T U R E

www.compactpci-systems.com

CompactPCI Systems / November 2001 Copyright ©2001 CompactPCI Systems. All rights reserved.

and eliminating costly file system operations with journaling file
systems, and by evolving our current Hard Hat Net technology to
track the emerging PICMG 2.16.

Redundant system slot
Sparing to eliminate single points of failure does not end with dou-
bling up on peripherals and interfaces, and interconnects – it
extends to the system slot CPUs as well, and has spawned a vari-
ety of chassis and system architectures to facilitate Redundant
System Slot (RSS) functionality.

All hardware platforms targeted by Hard Hat Linux involve dual-
domain chassis with dual system slot CPUs. Approaches differ in
how the processors manage and connect to multiple PCI bus
domains and whether those CPUs are run in a simple N+1
active/standby pair, in a parallel 2N redundant configuration, or
in various clustered permutations to squeeze more computing
bandwidth out of the system.

Linux itself, while needing to support all such configurations, can
accommodate most mixes of CPU and PCI domain connectivity,
quite flexibly. Our HA add-on for Hard Hat Linux, for example,
today manages the N+1 redundancy in a Ziatech chassis where
each CPU must own both PCI domains connected over local PCI-
to-PCI bridges, and by Q1 2002 will be able to accommodate
other vendors’ hardware with either split domains or cross-bar
isolated hot standby CPUs.

Even more challenging than managing the internal states of com-
plex I/O slot peripherals is maintaining the potentially heavy and
complex states of system controllers themselves on back-up
nodes. Since in HA systems, redundant nodes do not run in lock-
step and may not process identical data in comparable time
frames, applications designers must decide how much state infor-
mation is transferred among redundant CPUs and how often a
checkpoint occurs. Classically, applications designers and inte-
grators must trade off among the scope and frequency of check-
pointing against failover time (when and if remaining state data
must be copied over or synthesized).

While the Linux kernel will be able to accommodate the hand-off
of active PCI bus domains later this year, and Linux device sup-
port can handle almost any standard or proprietary checkpointing
channel, the check-pointing and health monitoring processes will
remain the province of middleware vendors (like GoAhead) or
certain key open source projects (see clustering with Linux).

CompactPCI backplane networking
Whether an application’s primary use of the CompactPCI back-
plane is for data transfer, health monitoring, or just for power, it is

also desirable to be able to leverage this communication path as a
networking medium. Several off-the-shelf solutions exist for pass-
ing network packets across the PCI bus at levels ranging from raw
transfers across bridges to shared memory, to Ethernet emulation,
to varying depths of IP networking, to very high-level messaging
abstractions.

Ethernet emulation with Hard Hat Net and PICMG 2.16
MontaVista Hard Hat Net (and other tools like Ziatech’s Com-
pactNet) enable both CompactPCI system controllers and periph-
eral devices to communicate using standard networking protocols
across the CompactPCI backplane. By emulating standard Ether-
net, such a scheme leverages the CompactPCI bus for intra-chassis
networking, and anticipates the emerging PICMG 2.16 specifica-
tions for backplane networking, giving embedded Linux developers
a tool for today and a path for the future PICMG standard.

Hard Hat Net functions by emulating a standard Linux Ethernet dri-
ver to implement the physical layer of the desired protocol (most
often IP). Thus, the higher levels of a given Linux network stack
operate just as they would for any traditional network interface,
allowing support of any type of network packet, not just TCP/IP.
Individual CompactPCI cards using Hard Hat Net can communi-
cate with other cards in their local PCI bus or route through network
interfaces to other nodes across traditional networking media.

Hard Hat Net abstracts hardware and CPU dependencies (e.g.,
endianness) to facilitate the transparent mix of vendors and
processor architectures present in today’s communications sys-
tems. Hard Hat Net supports a variety of protocols, including
Internet protocol (IP), IPX, and AppleTalk, among others. As a
result, Linux developers can take advantage of the high-speed
Hard Hat Net interface to implement a variety of loosely coupled
and distributed architectures, including Linux clustering, MPI,
PVM, and CORBA.

Redundant Ethernet (bonding)
A typical Ethernet-based TCP/IP network connecting two
machines, shown in Figure 2, consists of a host connected to a
network interface connected to a physical link that is connected
to a switch. This switch is then connected to a physical link,
which is connected to a network interface, which is connected to
another host.

Unfortunately, this connection scheme involves several single
points of failure. Putting aside the hosts themselves, these include:

■ Single Ethernet cables joining the hosts and the switch
■ Individual NIC instances in each host
■ The switch itself

Figure 2. Network with multiple single points of failure

www.compactpci-systems.com

CompactPCI Systems / November 2001 Copyright ©2001 CompactPCI Systems. All rights reserved.

As it turns out, each of these single points of failure represents an
easily addressable opportunity to enhance the reliability of the
total system through minimal redundancy, while also potentially
enhancing system throughput.

MontaVista Hard Hat Linux provides software to support redun-
dant active/backup networking. The solution entails two network
interfaces, two physical links, and two Ethernet switches in
active/backup configuration, as shown in Figure 3.

This redundant configuration can support a failure of any single
network interface, physical link, or Ethernet switch, as well as cer-
tain multiple failures, and still maintain network connectivity.

The challenge in supporting active/backup network configuration
is not in configuring the Ethernet hardware itself, but instead in
having software support in Linux for active/backup configuration.
To address this challenge, MontaVista contributes software and
testing to the development of active/backup software in the Linux
2.4 kernel.

The network bonding driver
The software driver joins two or more standard Ethernet drivers,
as exported by the Linux operating system, into one “bonded” net-
work interface. These NICs can be identical Ethernet devices on
a CompactPCI system controller, intelligent peripheral card, or
PMC devices on carriers, or an asymmetrical admixture of NIC
types. The bonding driver software can even control divergent
physical interfaces, melding 10 Mbit, 100 Mbit, or Gigabit Ether-
net and backplane networking.

The software monitors for link failures using MII link monitor-
ing. If a link failure is detected on the active link, the backup link
automatically becomes active. Other solutions include end-to-end
heart beating and other diagnostics to detect failures in the net-
work that can not be detected by MII link monitoring.

Clustering with Linux
To date, most Linux-based HA work has focused on clustering,
including open source efforts like the Linux-HA project, which
provides the heartbeat code that is central to many of the cluster-
ing solutions offered by enterprise-focused Linux companies.

More traditional examples of clustering that enhance performance
and augment application availability (MontaVista actually dem-
onstrated a cluster running over CompactPCI in a multi-vendor,
multi-architecture chassis at LinuxWorld New York in January,
2000). Options include:

Beowulf
By far the best known, most widely implemented standard network-
ing-based clustering software for high performance technical appli-
cations. For additional information see http://www.beowulf.org.

FailSafe
SGI’s placed its Failsafe product into open source, and Linux
developers are now benefiting from and enhancing many of the
features provided by Failsafe’s years of development as a product
under the IRIX operating system. See project home page at
http://oss.sgi.com/projects/failsafe/.

Piranha
RedHat’s open source clustering resource suite, including the Linux
Virtual Server (LVS) and various GUI-based management tools.
See project home page at http://sources.redhat.com/piranha/.

Kimberlite
Mission Critical Linux sponsors the Kimberlite project to build
clusters that provide support for dual server nodes connected to a
shared SCSI or fibre channel storage subsystem, in an active-
active failover environment. See download and information page
at http://oss.missioncriticallinux.com/projects/kimberlite/down-
load.php.

Management interfaces: SNMP, IPMI, Web
Requirements for HA system management interfaces vary greatly
in scope and paradigm preference [3]. Whether your project’s
preference is for SNMP, a Web interface, or a management
scheme based on GoAhead’s MOC architecture, you will still
need to:

Support hardware management and monitoring in HA systems
hardware (MIBs, CGIs, MOCs, etc.)

Leverage available IP networking infrastructure
Unlike traditional RTOS platforms, Linux brings with it rich net-
working and off-the-shelf options for standard interfaces like
SNMP agents and dozens of http servers with customizable CGIs,
ranging from the richness of the ubiquitous Apache server down
to pico servers implemented in as little as 200 lines of open source
C code.

Fault resilient storage
HA systems developers, at least at the system slot level, often
require redundant or otherwise fault resilient storage, usually
disk-based. Hard Hat Linux 2.0, for example, leverages the vari-
ous options for journaling/transaction logging file systems in the
corpus of open source Linux, primarily JFS, Reiser, and flash-
based JFFS.

I N D U S T R Y F E A T U R E

Figure 3. Network with fully redundant components

www.compactpci-systems.com

CompactPCI Systems / November 2001 Copyright ©2001 CompactPCI Systems. All rights reserved.

Hard Hat Linux and software disk mirroring (RAID 1)
A typical host contains a hard disk to store an operating system
and applications. Hard disks have moving parts and relatively
higher failure rates than passive motherboard components. Since
the system disk is a single point of failure, Hard Hat Linux pro-
vides disk redundancy by using software disk mirroring as shown
in Figure 4.

With disk mirroring, the SCSI cabling and SCSI HBA are still sin-
gle points of failure. To eliminate these weak points, you can use
redundant multi-initiator SCSI interfaces and cabling as shown in
Figure 5.

The software driver joins two or more standard partitions on a
block storage device. A block storage device could be SCSI or
IDE disk drive. Once joined, the software automatically mirrors
data written to one disk to both disks. If a disk fails, data will be
read from the surviving disk.

To support Open Availability Architecture, two hosts must be able
to read from and write to the same set of disks. This environment,
multi-initiator, exists in a highly redundant configuration, as
shown in Figure 5. MontaVista currently supports development
and testing of multi-initiator RAID systems for highly-available
configuration.

Middleware
Applications in a HA setting have all the enterprise-type require-
ments for middleware to support their functionality, as well as
needs for middleware and software services to support the coop-
erative nature of building applications on a highly available but
not necessarily fault tolerant base.

Embedded Databases
Telephony and communications infrastructure applications run-
ning over CompactPCI-based Linux have database requirements
of their own (e.g., SQL servers, OODBC clients, front/back office
integration), and will need to provide a reliable foundation for
locally hosted data for applications as diverse as usage billing,
subscriber info, mobility/roaming support, and routing tables.

Within the domain of monitoring and maintaining the integrity of
system hardware and platform software, requirements for a num-
ber of databases or database-like software components exist.
Specifically, some sort of database entity is needed to manage
CompactPCI chassis topology, board-level inventory, driver-hard-
ware associations, and to manage event handling policy.

Other middleware
Beyond the scope of this paper are other types of middleware for
Linux-based HA systems, including:

I N D U S T R Y F E A T U R E

Figure 4. Software disk mirroring removes single point of failure in disks

Figure 5. Storage system with fully redundant components

www.compactpci-systems.com

CompactPCI Systems / November 2001 Copyright ©2001 CompactPCI Systems. All rights reserved.

■ Management interfaces (see Management Interfaces section)
■ Distributed computing layers, e.g., CORBA, COM/DCOM,

MPI, others
■ Java (MontaVista integrates and offers IBM’s Visual Age

Micro Edition and J9 Virtual Machine)
■ Health monitoring, heart-beating, etc.

Kernel hardening
Traditional off-the-shelf operating system designs, whether archi-
tected for embedded, desktop, or enterprise applications, make
broad assumptions about hardware reliability and availability.
Since MTBF of the most popular operating systems (e.g.,
Windows) is typically characterized in hours, and the aggregate
MTBF of PC, server, or most embedded hardware is character-
ized in tens of thousands of hours, software designers have felt
safe to assume that software will ALWAYS fail before hardware.
Such assumptions sadly contribute to the low quality standards for
platform software, and render most COTS operating systems
inappropriate for use in highly available settings.

Linux benefits from the multi-user, multi-process memory pro-
tected architecture that it inherits from UNIX and also from the
intense scrutiny that its source code undergoes as an open source
entity. Any standard release (even-numbered kernel revisions,
e.g., 2.4.x) enjoys the attention of hundreds of developers and ker-
nel architects and millions of deployments, a quality assurance
regimen to which few pieces of software are ever subjected. As
such, the Web is full of anecdotal evidence that Linux MTBF can
often exceed that of the hardware on which it executes.

While this global, pervasive QA effort has gone very far in assur-
ing that Linux itself is highly stable, it has not resulted in all the
changes needed for “designing for failure.” While the Linux ker-
nel does easily recognize missing components and resources at
boot time (e.g., off-line removable media or unplugged notebook
CD-ROM drives), it does not readily handle runtime faults like:

■ Wholesale device failure (SCSI, IDE, serial, Ethernet, etc.)
■ Disk media faults in key file system areas
■ Networking interface failures
■ Memory failure
■ Resource shortages

In general, Linux, like other desktop operating systems, has a ten-
dency to “panic” in the face of some faults and to ignore other
fault conditions and blithely proceed with errant execution, and/or
to hang. It is important to note that while some such fault response
criteria lies with Linux kernel implementers, an even greater
responsibility lies with the even larger community of device dri-
ver and application programmers.

To address the oversights that result from the disparity between
hardware and software MTBF, MontaVista Software and others
are embarking on projects to “harden” the Linux kernel and dri-

vers so as to anticipate fault conditions with built-in detection, iso-
lation, reporting, and recovery mechanisms. In particular these
efforts entail:

■ Rigorous function return value evaluation/provision and
appropriate response in kernel and driver code (i.e., evaluate
and act on ANSI non-void function return values)

■ Log ALL error and even boundary conditions in a standard
fashion for easy logging, alarm generation, and error
“percolation”

■ Elimination of purely polled device interface code and
substitution of timeout-generated panics with error logging

■ Establishment of options for high and low water marks on all
classes of system resource pools (e.g., buffers, network
frames, global memory allocation) with alarm
generation/event logging when resources pass application-
defined low levels and/or return to acceptable norms (or even
to abnormal abundance)

■ Definition and implementation of monitoring and
management interfaces to manage system resources

Conclusion
Despite extravagant claims by vertical solutions vendors and var-
ious proprietary software platform suppliers, HA applications
benefit little from one-size-fits-all products. As such, developers
have had to roll their own technology for HA in addition to build-
ing their main value-added offering.

Unfortunately, top-down clustering solutions from vertically inte-
grated systems suppliers could not accommodate developers’par-
ticular hardware needs. Conversely, the COTS embedded systems
market focused too narrowly on bottom-up solutions offering lit-
tle more than board support and primitive hot replace technolo-
gies. “Filling in the middle” could often cost more than building
your own architecture from top to bottom.

Until recently, Linux could only offer an open source tool box,
with a steep learning curve and limited out-of-the-box added
value beyond platform stability and overall openness. Now, as
Linux is maturing and the Linux community gathers momentum
for HA technologies, developers can leverage rich frameworks
like the “Open Availability Architecture,” making better-informed
buy vs. build decisions, to bring their systems to market faster, and
with lower overall cost.

References:
[1] Venture Development Corp. World Market for Embedded
Software Development Tools, in The 2000 Embedded Software
Strategic Market Intelligence Program.

[2] Venture Development Corp. Vollume III – Linux’s Future in the
Embedded Systems Market, in The 2000 Embedded Software
Strategic Market Intelligence Program.

[3] Rose and Weinberg. [1999] “Software Concepts for High
Availability,” in Proceedings of the Embedded Systems Conference,
June (Boston).

I N D U S T R Y F E A T U R E

www.compactpci-systems.com

CompactPCI Systems / November 2001 Copyright ©2001 CompactPCI Systems. All rights reserved.

William Weinberg is Director of Product
Marketing at MontaVista Software where
he drives open source embedded tools
and technology from conception to market.
Bill combines more than 15 years of
embedded with real-time experience and
expertise in operating system and software
tools to leverage Linux for pervasive

computing. Previously, he managed Java, embedded Web tech-
nologies and alliances programs at Lynx Real-Time Systems.
Prior to Lynx, as Acer’s Brazil Country Manager, he spear-
headed introduction of Pentium technology and Internet-ready
PCs. Other experience includes engineering, product marketing,
and technical sales roles at companies like DocuGraphix,
Animatics, and Microtec Research. Throughout his career
Bill has been a featured speaker at industry conferences and
a frequent contributor to electronics and telecommunications
publications.

For more information, contact:

Bill Weinberg
Director, Strategy/Evangelism
MontaVista Software, Inc.
1237 East Arques Ave.
Sunnyvale, CA 94085
Tel: 408-328-9213
Fax: 408-328-3875
E-mail: bill_weinberg@mvista.com
Web site: www.mvista.com

I N D U S T R Y F E A T U R E

www.compactpci-systems.com

