T EC H DN OULOG'Y

F E A T U R E

Evolution of an
InfiniBand API

VIEO founder Jim Mott examines the
process his company followed to arrive
at the interface used by InfiniBand
managers and agents to send and
receive Management Datagrams
(MADs). Jim outlines the process from
beginning to completion, providing
data structures, functions, and a
walk-through of two specific examples
of the VIEO management API.

The InfiniBand architecture standard
describes the functions that fabric ele-
ments must support to be managed or to
provide management function to other
elements. There are no definitions on
how these functions should be imple-
mented or what specific interface man-
agement applications should use to
access a particular function.

VIEO provides prepackaged InfiniBand
management and transport software for
all defined fabric elements: target chan-
nel adapters, switches, host channel
adapters, and routers. In order to pro-
vide this software, we must define and
implement a number of programming
interfaces. This article examines the
process we followed to arrive at the
interface used by InfiniBand managers
and agents to send and receive MADs.

We began the process by looking at
high-level requirements for this Appli-
cation Program Interface (API). Who
were the customers of the API? How
many different environments must sup-
port the API? What other InfiniBand
activities might be competing with man-
agement applications for access to the
InfiniBand fabric? What sort of special
boundary cases must be considered
when evaluating potential APIs?

Finding the answers to these questions
allowed VIEO to create a very high-

Copyright 2001 CompactPCI Systems

level conceptual model for the environ-
ment in which InfiniBand management
occurs. This environment is pictured in
Figure 1.

Managers and agents will run in many
different environments. The primary
differentiators between environments
are the InfiniBand chips that must be
supported and the operating systems
and run-time environments in which
that code executes. These fundamental
choices are represented in our concep-
tual model as the “ASIC Support Code”
and “OS Abstraction Layer” boxes.
Everything else is built on these two
legs.

In addition to agents and managers, the
VIEO framework must support other
consumers of InfiniBand fabric services.
These include interfaces to external
enterprise and System Area Network
(SAN) managers, InfiniBand-aware
applications, and the standard device
drivers that access information currently
carried on the PCI bus. These functions
are represented by the “Fabric Execu-
tive” and “O/S Bypass SDKs” boxes in
the diagram.

| 4

g

By Jim Mott

The “VIEO Common Services Frame-
work” box represents code that multi-
plexes between the different consumers
of fabric services, provides functions
that are common to different services,
implements a security model that con-
trols access to subnet services, and gen-
erally defines a robust execution envi-
ronment for portable manager and agent
code that is independent of specific
chips or operating systems.

In order to assure the highest level of
functionality and interoperability test-
ing, we created portable library code
that allows us to use exactly the same
manager and agent code in each envi-
ronment. This results in the majority of
the development and test effort required
to support a new environment being
focused on the portability layer. Man-
agers, agents, and transports can be
debugged in the environment with the
best tools and regression can be tested in
new ones.

The VIEO Management Application
Interface (MAI) library implements the
primary transport between InfiniBand
managers/agents and the fabric. This API

VIED Coamumesn B&rvices Framework

ASKC Suppor Code

05 Absiraciion Lays

Figure 1

Reprinted from CompactPCI Systems / September 2001



www.compactpci-systems.com

provides the functionality described in
the InfiniBand specification as Subnet
Manager Interface (SMI) and General
Services Interface (GSI). In addition, it
provides raw access to the fabric for
debuggers and extended protocol devel-
opment. It also supports migration and
takeover of the manager/agent function
within a single environment.

MALI provides an interface for agents
and managers to select exactly which
Subnet Management Packets (SMPs)
and General Services Management
Packets (GMPs) they wish to receive
based on physical source (channel,
port), MAD header fields (Global Route
Header, Local Route Header, etc.), base
MAD fields (version, class, method),
and quantifiers (offset, length, value)
into the class specific fields. The inter-
face also supports migration of agent
and manager function during the boot
process, the development process, and
end customer code deployment and
update processes.

The MALI library provides the only
access method to Queue Pair 0 and
Queue Pair 1 for agents and managers.
The management API is supported at all
levels of the VIEO software stack which
means that agents and managers can run
at any level of that stack. It also means
that agents and managers can coexist
with other agents and managers running
at the same or different levels within the
software stack.

The API supports the concept of con-
suming or non-consuming agents and
managers. When a piece of code registers
a filter that describes the SMPs or GMPs
it wishes to receive, it also requests that
MADs that pass this filter are either
delivered exclusively to this function or
delivered to all agents or managers with
filters that would pass the MAD.

Access to redirected General Services
Interface ports is outside the scope of
the management API. If a manager or
agent redirects a general service man-
agement class, then that manager or
agent is responsible for setting up and
servicing all I/O for the redirected
Queue Pair.

All data is exchanged between the MAI
library calls and management applica-

Copyright 2001 CompactPCI Systems

tions using two data structures. These
structures are:

B mai_mad_t — Holds a complete
MAD plus routing information

B Filter_t — Holds a MAD template
using select MADs to receive

The MALI library provides support for
the following functions:

B mai_open — Open a channel to QPO
or QP1 on a specific device + port
mai_close — Close an open channel
and release all resources
mai_filter_create — Describe MADs
to be received on an open channel
mai_filter_delete — Remove a filter
mai_send — Send a MAD on an
open channel

mai_recv — Receive the next MAD
matching an attached filter

These are the only necessary functions
that a manager or agent uses to send and
receive MADs from QPO or QP1 on any
available InfiniBand device. The API
also supports access to all ports on
multi-port channel adapters (HCAs and
TCAs) and routers.

The MALI library provides support for
endian independent data conversions of
the core data structures used in the sys-
tem. These data conversion functions are:

B mai_mmstream() — Convert

mai_mad_t to byte stream

mai_rmstream() — Inverse of

mai_mmstream()

mai_mfstream() — Convert Filter_t

to byte stream

mai_rfstream() — Inverse of

mai_mfstream()

mai_towire() — Create InfiniBand

MAD from mai_mad_t

B mai_fromwire() — Create mai_
mad_t from an InfiniBand MAD

The MALI library is implemented using
a few of the operating system abstrac-
tion functions from the “OS Abstraction
Layer” box on Figure 1. To convey an
idea of what sort of functions are pro-
vided by this layer, the functions and a
short description are shown below:

B vs_initlock — Initialize a spin lock
B vs_lock — Get a spin lock
B vs_unlock — Release a spin lock

B vs_thread_create — Create a thread,
if possible

vs_thread_resume — Begin execution
of a thread

vs_thread_kill — Kill a thread

(me in this file)

vs_thread_name — Returns pointer
to thread CB

vs_event_create — Initialize and
event ctl blk

vs_event_wait — Wait for an event
vs_event_post — Signal an event has
occurred

vs_time_get — Return 64-bit current
time in microseconds

vs_log_error — Store fatal error log
vs_log_info — Interesting trace info
vs_enter — Function entry

vs_exit — Function exit
vs_fatal_error — Shutdown total
system

vs_priv_check — Validates
appropriate privileges

In addition to the operating system ser-
vices shown above, a number of envi-
ronment-specific functions (user space,
kernel space, embedded, etc.) from the
“OS Abstraction Layer” are also used in
the implementation of the MAI inter-
face. These functions are:

B ib_attach_sma — Attach QP0O/QP1
down channel

B ib_detach_sma — Let it go again

M ib_recv_sma — Read one MAD
from down channel

M ib_send_sma — Send a MAD to
down channel

B ib_control — Manipulate down
channel filters

To better illustrate how the VIEO man-
agement API works, we will walk
through two specific examples. These
examples assume a full-blown HCA
environment with a user space agent,
kernel support, and an intelligent
InfiniBand adapter.

The important point here is that the
example agent code and the manage-
ment API that supports it, run totally
unmodified in all the possible locations
in the software stack. This example
shows a three-level stack: user space,
kernel space, embedded firmware. The
agent is shown running in user space,
but it runs equally well in the kernel or
embedded environment.

Reprinted from CompactPCI Systems / September 2001



www.compactpci-systems.com

T EC H DN OL O G Y

F E A T U R E

Typically a TCA or a switch will trun-
cate the top one or two levels of the
stack and run the agent on the highest
remaining level. Many HCAs will not
implement the intelligent adapter, so
they will truncate the bottom level of
the stack. None of these differences
will have any effect on the agent source
code or on the correct operation of the
agent.

Figure 2 shows the management flow
through the software framework.

mai_open flow

Before the agent can send or receive
MADs, it must establish a connection
through the management API to the
InfiniBand chipset that actually puts
MADs on the wire and receives them
from the wire. The basic flow for this
open operation looks as follows:

1. Agent calls mai_open().US
The user space mai_open()
function notices that it does not
have an open connection to the
management API open service
below it. It uses the common ser-
vices function ib_attach_sma() to

Applicatipng

open a channel to the MAD
send/receive subsystem.

Once the ib_attach_sma().US call
returns without error, the library
code starts a thread that immedi-
ately calls ib_recv_sma() on the
newly opened channel to the
management API service below
it. As this thread receives MADs,
it matches them against filters
attached to all the up channels and
places the MAD in the receive
queue for each channel that has a
matching filter.

Note: There are more details to
the receive, filter matching, and
MAD queuing operations. There
is also a non-threaded version of
the management API library that
does not require a receive thread
or any other thread support. This
implementation is not discussed
in detail.

. ib_attach_sma().US uses ioctl()

The user space common services
implementation of ib_attach_sma()
uses an ioctl() call to connect with

Application Specific

komi Lit mal_send(). US « B_send_smai) U5

Libraries

O i b i Sriade) Sl Arive — KaCH ) FulficBif

Hamal

i
|I mai send(] K« b send wmall K « ewae mag K I

frrmware_msg FW

[mwﬂ{le--ﬁmer—w

Chipsed

Figure 2

Copyright 2001 CompactPCI Systems

the kernel management API imple-
mentation.

. In kernel device driver ioctl()

handler calls mai_open().K

The ioctl() handler in the kernel
device driver runs in the callers
process context and requests the
management API to open a channel.
Notice that this has been placed in
kernel agents/managers at the same
level as user space agents/managers
as far as the in kernel management
API is concerned.

. mai_open().K calls

ib_attach_sma().K

The kernel space mai_open()
function notices that it does not
have an open connection to the
MAD management API open ser-
vice below it. It uses the common
services function ib_attach_sma()
to open a channel to the MAD
send/receive subsystem.

Once the ib_attach_sma().K call
returns without error, the library
code starts a thread that immedi-
ately calls ib_recv_sma() on the
newly opened channel to manage-
ment API service below it. As this
thread receives MADs, it matches
them against filters attached to all
the up channels and places the
MAD in the receive queue for each
channel that has a matching filter.

. ib_attach_sma().K send message

to firmware

The in kernel implementation of
ib_attach_sma() packages up the
open request and sends it to the
embedded processor on the intelli-
gent HCA adapter to service. The
IPC used to communicate between
the kernel and the embedded proces-
sor is part of the kernel porting work
required to support the HCA.

. Embedded HCA processor

extracts message and calls
mai_open().FW
Communication between the
host and the embedded processor
runs through a messaging library.
When a request from the host is

Reprinted from CompactPCI Systems / September 2001



www.compactpci-systems.com

received, the function requested is
decoded by the messaging sub-
system and the appropriate entry
point is called. Notice that this has
placed all the agents/manager run-
ning in the host at the same level
as firmware agents/managers, as
far as the firmware management
API is concerned.

. mai_open().FW calls
ib_attach_sma().FW

The embedded mai_open()
function notices that it does not
have an open connection to the
MAD management API open ser-
vice below it. It uses the common
services function ib_attach_sma()
to open a channel to the MAD
send/receive subsystem.

Once the ib_attach_sma().FW call
returns without error, the library
code starts a thread that immedi-
ately calls ib_recv_sma() on the
newly opened channel to manage-
ment API service below it. As this
thread receives MADs, it matches
them against filters attached to all
the up channels and places the
MAD in the receive queue for each
channel that has a matching filter.

. ib_attach_sma().FW interacts
with InfiniBand chip to start
MADs flowing

The firmware version of ib_
attach_sma() is responsible for
actually working with the
InfiniBand chipset to make sure
management MADs can be sent and
received on the SMI or GSI inter-
face. It does this by using “ASIC
Support Code” functions, internal
serialization functions, and any
other resources required.

In this example flow, three different
types of code were required:

H Common code

The management API library
(mai_open) is exactly the same code
running in three different environ-
ments: user space, kernel space, and
firmware.

OS Abstraction Layer
transport code
The common services porting layer

Copyright 2001 CompactPCI Systems

function (ib_attach_sma) is imple-
mented differently in each of the
three different environments. This is
the primary work required to sup-
port a new layer in the stack.

B Glue code

The various environments require
different mechanisms to exchange
information across their boundaries
(ioctl(), messages, CSR 1/0O). While
this code must be developed for
each port, it can be shared between
different communicating entities in
one port and across different but
similar ports to different platforms.

mai_send flow

Once a management channel has been
opened, applications are able to send
MADs out that channel. These MADs
can be fully specified (raw MADs),
including all headers, optional headers,
and data fields or they can be “normal”
MADs. The management API library
code is responsible for verifying that
applications sending raw MADs have
appropriate privileges to do that.

The basic flow for an mai_send opera-
tion looks like:

1. Agent calls mai_send().US
The user space mai_send() function
validates the request and passes the
mai_mad_t data structure to
ib_send_sma().US.

2. ib_send_sma().US uses ioctl()
The user space common services
implementation of ib_send_sma()
uses an ioctl() to pass the MAD to
kernel space management API code.

3. In kernel device driver ioctl()
handler calls mai_send().K
The device driver ioctl() handler
acts as a kernel space surrogate for
the management API library code
running in user space processes. It
runs on the user space process/
thread and calls the in kernel
mai_send().K function.

4. mai_send().K calls
ib_send_sma().K
The kernel space mai_send() func-
tion validates the request and passes
the mai_mad_t data structure to
ib_send_sma().K.

. ib_send_sma().K sends a message

to firmware

The kernel implementation of
ib_send_sma() packages up the
request and the mai_mad_t data
and sends it to the embedded
processor on the HCA adapter. The
IPC used to communicate between
the kernel and the embedded
processor is part of the kernel port-
ing work required to support an
HCA. This is the same IPC code
used by other kernel space
ib_xxx_sma() functions.

. Embedded processor on HCA

adapter extracts message and
calls mai_send().FW

When the adapter on the firmware
receives a message from the kernel,
it decodes the message and data. It
then calls mai_send().FW with the
mai_mad_t data.

. mai_send().FW calls

ib_send_sma().FW

The firmware mai_send() function
validates the request and passes
the mai_mad_t data structure to
ib_send_sma().FW.

. ib_send_sma().FW interacts

with the InfiniBand chip to send
out the MAD

The firmware implementation of
ib_send_sma() is responsible for
doing whatever hardware functions
it takes to put the MAD out on the
wire. It does this by using “ASIC
Support Code” functions, internal
subroutines and serialization func-
tions, and any other resources
required.

The lowest level ib_send_sma()
function is also responsible for spe-
cial processing on Out Of Band
(OOB) messages. When the mai_
mad_t contains no MAD, but in-
stead, OOB data, the ib_send_sma().
FW routine will wrap the mai_mad
_tstructure back to the received
MAD queue. This results in the
OOB data being passed back up the
stack and queued to the input buffers
of all channels with matching filters.
This function provides a way for
agents/managers that are notified of
another agent/manager taking over
exclusively what used to be their

Reprinted from CompactPCI Systems / September 2001



www.compactpci-systems.com

MAD:s, to provide the new agent/
manager with current internal state.

In this example flow, four different
types of code were required:

H Common code
The management API library
(mai_send) is exactly the same code
running in three different environ-
ments: user space, kernel space, and
firmware.

B OS Abstraction Layer
transport code
The common service porting layer
function (ib_send_sma) is imple-
mented differently in each of the
three different environments. This is
the primary work required to sup-
port a new layer in the stack.

B Endian independent data
conversion functions
When the ib_send_sma().K
function passes the mai_mad_t data
structure to firmware it must first
render that structure as a byte
stream that preserves structure
element boundaries and interpreta-
tions. It does this by calling the
mai_mmstream() utility function.
The firmware message handler code
uses the inverse mai_rmstream()
utility to convert that byte stream
to a firmware version of the

Copyright 2001 CompactPCI Systems

mai_mad_t structure suitable for
passing to mai_send().FW.

B Glue code

The various environments require
different mechanisms to exchange
information across their boundaries
(ioctl(), messages, CSR I/O). While
this code must be developed for
each port, it can be shared between
different communicating entities in
one port and across different but
similar ports to different platforms.

Summary

The publication of the InfiniBand
Architecture 1.0 Specification in Octo-
ber 2000 was a culmination of a tremen-
dous collaborative effort by the leading
technology companies heading up the
InfiniBand Trade Association (IBTA).
As the industry gears up to deliver com-
mercial InfiniBand-enabled products,
the active working groups within the
IBTA continue to expand the specifi-
cation to ensure it addresses the func-
tional needs of tomorrow’s data center.
However, the specification deliberately
avoids defining how management func-
tions should be implemented, leaving
that to the vendors deploying Infini-
Band products.

This article outlining the VIEO MAI is
contributed to the InfiniBand commu-
nity in an effort to promote dialog and

to accelerate industry adoption. It is the
first in a series of papers that describe
VIEQO’s software architecture and APIs.
The author welcomes comments and the
opportunity to discuss specific imple-
mentation issues.

Jim Mott is the
Chief Technology
Officer and founder
of VIEO, Inc. He has
more than 20 years

experience in com-
puter system design,
architecture, and implementation. With
both hardware and software expertise,
Jim has an extensive background in
communications architecture, network-
ing, cluster distributed systems, embed-
ded systems, video servers, robotics,
and instruction and gate-level com-
puter simulators. He also served as
lead architect on IBM’s AIX operating
system.

For more information contact Jim at:

James M. Mott
VIEO, Inc.

12416 Hymeadow Dr., Suite 200
Austin, TX 78750
Telephone: 512-257-3031
E-mail: jim@vieo.com
Web site: www.vieo.com

Reprinted from CompactPCI Systems / September 2001



www.compactpci-systems.com

