
This issue’s column will look at various aspects that can affect the
effort and development risk of a communications software product
and how various commercial RTOSs address these issues.

Historical telecommunications systems revolve around central-
ized switching equipment with little or no intelligence outside the
core network cloud. The Internet has polarized data communica-
tions around the IP protocol and a distributed network where all
connected nodes have intelligence. Broadcast systems are yet
another force shaping the future of network systems, bringing
with it the capability of video and wireless transmission. All these
things can be summed up with one word for today’s software
developer — complexity. You don’t have to be creating something
formally classified as “network equipment” to feel it; any product
that communicates with external equipment is touched by this
increasing complexity.

The cornerstone of the software developer’s arsenal is the real-
time operating system (RTOS). Contrary to popular belief, all
RTOSs are not “created equal”. That is, the design philosophy and
capability set of every RTOS is different. What the RTOS does
and doesn’t include makes it a better or worse fit for a particular
application. Whether it’s an internally developed OS or a com-
mercially available RTOS, it’s important to have the right capa-
bility set in the RTOS to minimize the network complexity.

The areas of complexity that will be focused on include:

■ Ease of development, integration, and adaptability; a commu-
nications framework that accommodates current and future net-
work software requirements

■ Required protocols and how they integrate and interoperate
with each other and the RTOS

■ Performance. Can the software solution perform in terms of max-
imum throughput and minimum CPU utilization parameters?

■ Reliability/availability. Can a single bug/failure in the software
bring the entire system down, or is the software environment
fault tolerant?

Ease of Development
A communications framework that is integrated with the RTOS
can go a long way to simplifying communications software
development. A 1997 worldwide study by the Technology
Institute of Finland cited one of the most important areas to

address was networked embedded systems and their applications.
The study concluded that one of the core software competencies
required is a software architecture that integrates embedded com-

munication and control. The first
step to realizing this in a com-
mercial RTOS is the presence of
a defined I/O system. Many com-
mercial operating systems have
no formal I/O system. The only
framework that exists is a task or
thread context that can be used to
create a framework that commu-
nicates with a protocol stack and
network interface. Without a for-
mal network I/O system, it’s dif-
ficult to incorporate much more
than a single-purpose network

stack. If any custom protocols or processing is required, an RTOS
with no I/O system makes this difficult. Operating systems like
Microware’s OS-9, Linux, and Lynx’s LynxOS have formal I/O
systems that facilitate the creation of a communications frame-
work. Microware has gone one step further by actually creating a
full featured communications software framework called
SoftStax™ and offering it with the OS-9 operating system pack-
age. Operating systems like VxWorks, pSOS, and VRTX do not
have formal I/O systems, making communications development
more difficult.

Protocols
Figure 1 shows the percentage of use for various protocols in net-
worked embedded applications. One observation shows that
TCP/IP protocol usage has risen by almost 10% while Ethernet
usage has declined slightly. This means that TCP/IP is seeing
increased usage on other network topologies. This is not surpris-

Software corner:
Real-time operating system
support for network applications:
It’s not just TCP/IP anymore

By Curtis A. Schwaderer

Figure 1

Sources
Embedded Systems Programming

Study (1997)
VDC Embedded Systems Study (1998)
EETimes Reader Survey (1998)



ing considering the number of Internet appliances that use other
WAN and wireless technologies to access the Internet. Another
interesting observation from the chart is that a growing number
of applications require custom protocols. All viable RTOS pack-
ages come with TCP/IP on Ethernet, but how easy is it to use
TCP/IP over other network topologies? This is something that
must be considered. Most operating systems implement device
drivers that can be invoked by the IP layer so the creation of
TCP/IP based systems over other network topologies isn’t too
bad, but what about custom protocol creation and interoperabil-
ity? This is an area of major concern for many software develop-
ers. The Microware OS-9 RTOS seems to win out here, mainly
because protocol interoperability is linked to the availability
of one common communications framework for the RTOS.
Microware provides a “null layer” protocol driver in the product
that allows the developer to implement protocol processing in
this module. All other protocol layers for OS-9 are written with
the same framework, so the custom protocol is immediately
interoperable. There are vendors such as Mentat who has created
a STREAMS framework for RTOSs such as VxWorks. This
additional product coupled with VxWorks can also alleviate cus-
tom protocol interoperability problems. The difference between
the Mentat approach is that the STREAMS implementation uses
the task framework layered on top of the RTOS while the
Microware approach for OS-9 uses the driver-based SoftStax
framework integrated with the RTOS.

Performance
The advent of faster network topologies such as fast Ethernet and
ATM has caused the industry to rethink networking software
development. The historical approach has built-in inefficiencies
such as multiple context switching between the application and
tasks implementing the protocol stack(s) and associated critical
section protection. These inefficiencies are magnified on higher
speed network topologies. This factor, in conjunction with the
requirement to increase throughput and carry real-time data,
causes software engineers to really look at software solutions and
how they are addressing performance. 

For the past six months, I tracked fast Ethernet performance on
Microware Systems OS-9, Integrated Systems pSOS, and Wind
River’s VxWorks operating system. The OS-9 TCP/IP stack
employs a driver based TCP/IP stack where pSOS and VxWorks
use a task-based TCP/IP stack. Two reference customers had
demanding throughput requirements on the Motorola 860T
processor and these three operating systems were benchmarked

over time to see which solution could meet the throughput
requirements. See Figure 2 for the PowerPC 860T, 47 MHz per-
formance comparison. OS-9 is currently ahead in the performance
battle attributed to the driver based architecture the BSD v4.4
TCP/IP stack lives within and the tuning Microware has done to
the TCP/IP environment itself. The pSOS operating system
started out as the highest performing, but has remained constant
over the past six months. VxWorks is not known for performance,
so it’s understandable that VxWorks lags behind in the perfor-
mance area. 

Reliability/Availability
As embedded applications become more complex, the number of
inherent bugs in the system increases. Accepting the fact that
there will be software bugs buried in the final product causes the
designer to focus on how the software baseline handles a mani-
festation of any of these bugs that occur during operation. This is
where it’s important to understand how vulnerable the operating
system is to accidental or malicious system corruption. Support
for a memory management unit (MMU) is critical for high relia-
bility systems. Some operating systems offer MMU add-on pack-
ages, but this requires the application to be written correctly
to use the MMU itself, which defeats the purpose of inherent
memory protection. There are a variety of operating systems
that focus on high reliability environments. These operating
systems employ a “process model” approach as opposed to a
“threads based” approach to make use of the MMU, and provide
memory and resource protection between processes. Operating
systems such as QNX, Enea OSE, Microware OS-9, and Lynx
LynxOS employ system security and memory protection. Even
WindowsCE is a process model operating system, while not
intended for high reliability applications right now, it’s interest-
ing to note that this new operating system was designed with
process model support. Enea OSE and Microware OS-9 also
have the ability to add, remove, and replace software components
while the system is online and in use. This provides an additional
measure of availability, even if the system is being maintained
or upgraded.

Conclusion
Just about every software package today has integrated TCP/
IP/Ethernet support. As we’ve discussed, this tells little about the
software package’s ability to accommodate or interoperate with
other network topologies and WAN/custom protocol layers. This
consideration in addition to performance and reliability and
availability requirements can save significant development time

and headaches for network software developers. As
you begin work on new projects, I urge you to con-
sider these issues. With the right match of capabili-
ties to your requirements, a successful product can
be launched and you may even get home a little ear-
lier as well!

Figure 2

Curtis Schwaderer has studied and been

involved in the development of networked

embedded systems for over 15 years. In this

column, Curt discusses four issues critical

to successful software development of

a networked product and the level of support

various RTOSs have for these issues.

Curt can be contacted at curtsch@juno.com.


