
Reprinted from CompactPCI and AdvancedTCA Systems / June 2006	 Copyright 2006

CompactPCI & AdvancedTCA Systems

Software Corner
CompactPCI & AdvancedTCA Systems

Embedded systems software continues to
grow in complexity. With the increase in
performance and capacity of embedded
hardware platforms, embedded software
programming has grown to where it is
not uncommon for an embedded system
to reach or exceed 100,000 lines of code.
In fact, one QNX Software Systems
white paper refers to research suggesting
that the code base for a typical embed-
ded project doubles every 10 months.
Increasing complexity, coupled with
the fact that today’s embedded systems
are network-connected, leads to perfor-
mance, reliability, and security issues that
need solutions. This column is the first of
a two-part exploration of adaptive par-
titioning from QNX, a leading Real-
Time Operating System (RTOS) provider.
Both parts of the column are available in
full at www.compactpci-systems.com/
software_corner. The discussion centers
on how adaptive partitioning addresses
security and reliability concerns.

Security and reliability
The concept of security for a network-
connected device is a well-documented

and well-known challenge for networked
embedded systems. These issues strike at
the very heart of the embedded system,
the RTOS. Historically, two models of
OSs have been used in embedded sys-
tems. One model is a simple threads-
based approach where each thread has the
ability to access any resource (memory
or I/O) in the system, accidentally or
maliciously.

The other model is a process model where
each process in the system runs in its own
protected memory space. The OS manages
memory and I/O, and processes can only
access memory, I/O, and other resources
within the embedded system environment
through formal methods using RTOS API
calls. For low complexity, simple embed-
ded systems, a threads-based OS has the
advantage that everything can be directly
accessed without the overhead of the OS
management. But for the vast majority of
today’s embedded systems applications,
a process model OS and the protection it
provides against accidental or malicious
corruption is a necessity. Most process
model OSs are also multithreaded, so

the developer can take advantage of the
simplicity of thread interactions while
still having the protection of a process
model environment.

Another dimension is the development
complexity involving process and thread
execution not only from the memory and
resource sharing point of view, but from
the execution interaction point of view.
When multiple teams are developing
software subsystems to be deployed on
an embedded system, finding and fixing
stray memory pointers or improper use of
I/O resources is only the beginning of the
test process. Perhaps the most daunting
task in the system test process involves the
complex execution interactions between
subsystems when run together on the
same embedded platform. Subsystems
that work fine running alone might spuri-
ously error or malfunction when run with
the entire system. These issues have led
to the concept of partitioning CPU cycles
in an analogous manner to process model
memory and I/O partitioning. Figure 1
is an excerpt from a QNX white paper
on partitioning that shows the options

Execution partitioning for embedded
systems increases security, reliability

Partitioning
Approach

Product
Cost

Time to
Market

SW Development
Cost

Hardware
Partitioning

OS-controlled
Partitioning

Application-
level CPU
Control

• Redundant hardware
cost passed on to
customers; results in
less competitive pricing

• Minimal processing
overhead

• Processing overhead
consumed by application
may require incremental
hardware

• Less software
complexity; requires less
development effort

• Minimal software
complexity to provide
CPU guarantees

• Complex design
required to manage CPU
allocation

• Favorable time to market,
but higher hardware costs

• Favorable time to
market assuming existing
code base can be easily
used

• Complicated, multiparty
design and implementation
reduces productivity and
slows time to market

Figure 1

By Curt Schwaderer

http://www.compactpci-systems.com

Reprinted from CompactPCI and AdvancedTCA Systems / June 2006	 Copyright 2006

a developer has when deciding how to
implement the execution partitioning of
an embedded system.

Execution partitioning
Execution partitioning means that each
subsystem is developed and compartmen-
talized within a specific execution parti-
tion. The execution partition is guaranteed
to be allocated the defined percentage of
the CPU cycles for the platform. The idea
is twofold:

1. 	�Address security challenges –
Execution partitioning minimizes
Denial of Service (DoS) attacks by
limiting the amount of CPU cycles
applications can consume. Thus,
malicious applications cannot totally
consume the hardware processing
resources.

2.	� Address system integration
challenges – Each subsystem can
be tested with a certain percentage
of the CPU cycles allocated.

This twofold approach minimizes the
effects that change the execution char-
acteristics of the subsystem within the
context of the entire system software.

Approaches to partitioning
Hardware partitioning (where subsystems
execute on different processors within the

embedded system) can reduce the soft-
ware complexity, but adds significant cost
to the product.

Application level partitioning increases
engineering costs and complexity because
software must be written within the appli-
cation to implement the partitioning algo-
rithms. This makes the application less
portable, more complex, and does little to
prevent denial of service attacks since the
applications are governing themselves.

The OS level partitioning is a favorable
mix of software managed execution par-
titioning with no impact on the applica-
tion and software subsystem complexity.
When this form of partitioning is done
properly, the applications are not even
aware of the execution partitioning hap-
pening in the system.

Therefore, the concept of execution par-
titioning boils down to identifying what
percentage of the CPU cycles each task
or group of tasks are to be allocated
and, within the OS, implementing the
algorithm to enforce the execution parti-
tioning. For example, I may have some
networking tasks that are very important
to the system, while the graphics and serial
I/O subsystems are of less importance. I
can assign all threads and processes relat-
ing to the networking a partition to get

66 percent of the execution cycles while
assigning 20 percent to the graphics tasks
and 14 percent to the serial I/O tasks.

Both parts of this column appear in
full at www.compactpci-systems.com/
software_corner, where you will
find more on how the OS schedules
tasks for partitioning, on allocating
execution partitions, and on the QNX
Neutrino OS and the company’s Momen-
tics development suite.

For more information, contact
Curt at cschwaderer@opensystems-
publishing.com.

This column appears in full at:
www.compactpci-systems.com/

software_corner

More information on QNX adaptive
partitioning: www.qnx.com

WWW

http://www.compactpci-systems.com

